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ticated theory of Rezanov & Masharov (1962) is the 
second-worst fit with the experimental results. Equa- 
tion (2) should have agreed better with experimental 
results than equation (1) since the former is valid at 
high temperature (room temperature) at which the 
experiment was performed, whereas actually it is the 
worst fit. The present formula [equation (15)] and that of 
Valvoda & Syne6ek [equation (6)] give equally good 
agreement with the experimental results and hence both 
of them are satisfactory additivity relations for the 
Debye temperature of a disordered binary substitu- 
tional alloy in terms of those of the component metals. 
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Precise Measurement of Lattice Parameters of Pseudocubic Lattices* 
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For accurate measurements of lattice parameters of materials where symmetry differs only slightly 
from cubic, difficulties arise in the determination of single lines belonging to the lattice of Dower symme- 
try because of the overlapping profiles of the pseudocubic lines. In this contribution the profiles of 
single lines of lower symmetry are approximated by the Cauchy curve and the profiles of the pseudo- 
cubic lines are considered as superpositioning of these curves. The resolution of the profiles and the 
determination of the lattice parameters are performed by means of a computer fitting least-squares 
program. The conditions for solving the problem are discussed and the method is then applied to a 
pseudocubic perovskite. 

I. Introduction 

The true crystal lattice of pseudocubic structures differs 
only slightly from the cubic one and the particular 
diffraction lines are grouped together around the 
'pseudocubic' positions. The line splitting is, therefore, 
often very small; and in the precise determination of 
lattice parameters, one encounters the problem of re- 
solving the positions of the single lines. For example, 
in perovskite-like solid solutions of PbTiyZrl_yOz for 
0 .10<y<0-40 ,  the true lattice is rhombohedral (a t=  
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4" 13 •), but the deviation of the rhombohedral angle 
0c from 90 ° is only about 16'. 

In this paper, a method for resolving the overlapping 
pseudocubic profiles is presented; and the method is 
applied to precise lattice parameter determinations of 
PbTiyZrl_rO3 for y=0-10,  0.20, 0.30 and 0-38. 

H. Method of resolution of profiles 

The procedure for resolving overlapping lines is based 
on the premise that a single diffraction line can be 
approximated by a particular analytic function and 
that the profile of overlapping lines can be expressed 
by the superposition of these single functions. 

Various analytic curves for the approximation of the 
profile of a single line can be used according to the prob- 
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lem to be solved. Often one obtains a good approxima- 
tion using the Cauchy curve 

i ~ =  Vl 

l + 4 ( x - v z ] z  (1) 
\ Va / 

where x denotes the independent variable of the profile, 
which is usually a linear function of the diffraction 
angle 0; vt is the height of the profile above the back- 
ground, v2 is the position of the line, i.e. the value of x 
for which the profile takes its maximal value vt: v3 is 
the full width of the profile at one half peak height 
above background. In those instances where the asym- 
metry of the profile should be taken into account, one 
can use two parameters for width, the first for x < v2 
and the second for x > v2, similarly as employed for the 
asymmetry of spectral profiles. 

For resolving the profiles, it is necessary that the 
single line be approximated by the particular analytic 
function in(x, v,,,,) which includes the parameters v,,,, 
characterizing the features of the line: height, position, 
width, asymmetry, etc. The determination of these par- 
ameters for each line is essential for the resolution of 
the superposed profile. The analytical form of the func- 
tion i,(X, Vm,,) need not be the same for all lines con- 
sidered. 

The criterion for the determination of the parameters 
Vm,, for each line n is the fitting of the analytical curve 

I(X, Vm,,)= ~ i,(X, Vm,,,) (2) 
n 

to the experimentally determined values Ie(Xj) of the 
profile of the overlapping lines. Using the least-squares 
method, the values of the parameters Vm,,, are deter- 
mined when the function 

S(v,,,,) = ~ [l(xs, Vm..)-I~(xs)] 2 (3) 
J 

assumes its minimum value. 
The determination of Vm,,,, as independent param- 

eters, is possible only in those cases where the diffrac- 
tion lines are separated sufficiently. In a real situation, 
involving pseudocubic lattices, there is usually not 
enough information in the measured profile for such a 
determination. Accordingly, relations between the con- 
stants, following from the nature of diffraction, must 
be used so as to reduce the number of degrees of 
freedom. The explicit form of these relations depends 
on the conditions of the experiment and on the type of 
problem to be solved. 

HI. Computer program for the determination 
of lattice parameters 

For lattice parameter measurements the doublets 
KeI,2 are frequently used. The first simple relations 
between the parameters Vm,, follow from those between 
the components ~1 and ~2 of the doublet 

v, ,~2/vx, ~1 = M.  /1(0 ) (4a) 

v3,.2/v3,.~= W.co(O) (4b) 
where v1,,2, v1,,1 are the heights and v3,,2, v3,,, are the 
widths of the components c~2, el respectively. The con- 
stants M and W are unknown but are the same for all 
diffraction lines, and the factors/z(0) and co(0), func- 
tions of the Bragg angle 0, can be expressed using the 
Bragg equation and expressions for the intensities of 
the lines. For those lines with 0 < 80 °, it is reasonable 
to approximate p(0) and co(0) as each equal to unity. 

To decrease further the number of independent 
variables, the positions of single lines can be expressed 
by the lattice parameters using the Bragg equation and 
the relation for lattice spacings appropriate to the 
structure considered. For this it is necessary to take 
into account the systematic errors which influence the 
actual position of the lines. The systematic error in the 
Bragg angle can be assumed by 

A O = k .  ~o (5) 

where k denotes the constant of proportionality and 
~0 = re/2-0 is the complement of the Bragg angle. Cer- 
nohorsky (1968)showed that equation (5) relates to the 
Nelson-Riley extrapolation function with an accuracy 
in lattice parameter of better than 5 x 10 - 4  %. Accord- 
ingly, one can write, for the positions of the lines, the 
relation 

v2,, = X -  Y. ~0,, (6) 

where X expresses the value of the variable x corres- 
ponding to 0--90 ° and Y denotes the modulus of the 
scale of x. ~0,, the complement of the true Bragg angle 
is expressed, e.g. for a hexagonal lattice, by the 
relation 

, 2 (a / c )  2 ] (7) ~0,,=cos- 1 [ 2-~ I/~(h. + h.. k,, + k.~)+/.~. 

where a and e are the hexagonal lattice parameters, 
h,,, k., l, are the hexagonal indices of the diffraction 
line n, and 2, is the corresponding wavelength of radi- 
ation. 

For the precisely aligned diffractometer, the variable 
x=20,  where 0 is the measured diffraction angle ex- 
pressed in degrees. When the systematic errors are 
negligible (k=0),  then X =  180 ° and Y=2. All param- 
eters v2,,, of the positions of the lines are then replaced 
by the lattice parameters only. 

In the case of photographic film measurements, the 
variable x, measured along the equatorial axis of the 
film, is proportional to the measured diffraction angle 
by a constant 2D, where D is the true diameter of the 
fihn (after shrinkage corrections). The systematic 
errors, mainly absorption errors, usually cannot be 
neglected. Using equation (5) the constant Y= 
2D(1-k). The product D(1-k) is called the 'effective di- 
ameter' of the camera (Cernohorsky, 1961). For the 
determination of X and Y, the symmetry of the back 
reflection lines with respect to the primary beam can be 
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Fig. 1. The results of the fitting procedure for PbTivZrl-~/O 3. The dots express the experimental values ire of profiles after back- 
ground subtraction. The solid lines represent the resulting calculated profile (omitted when it coincides with a high density of 
experimental points). In Fig. 1A the resulting profiles of single lines are added on a shifted scale. 

A (I) PbTio.loZro.9003 +Ag 
B (I) PbTio.20Zro.8003 + Ag 
C (I) PbTio.30Zro.7003+ Ag 
D (I) PbTio.30Zro.7003 + A1 
E (I) PbTio.38Zro.6203 + A1 
F (II) PbTio.38Zro.6203 + A1 
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used or the introduction of external reference lines is 
necessary. Both X and Y are then determined, together 
with the lattice parameters and other parameters Vm.,, 
by minimizing S in relation (3). 

The introduction of reference lines is useful, not only 
for the determination of X and Y in relation (6), where 
the known position of the lines is utilized, but also for 
the determination of the ratio of the heights of doublets 
[equation (4a)] when the separation of pseudocubic 
lines is small in relation to their widths. The evaluation 
of the reference lines is performed in the same way as 
mentioned above for the pseudocubic lattices, where 
the angle ~0, is calculated using the appropriate ex- 
pression for the reference lattice. 

The program (FORTRAN IV) based on the fore- 
going is useful for both diffractometric and film meas- 
urements. For approximating the profiles of the dif- 
fraction lines, the symmetric Cauchy curve [equation 
(1)] has been used, but any other function may be sub- 
stituted by replacing only one arithmetic instruction. 
The capacity of the program enables one to evaluate 
a maximum of five reference cubic lines and eight 
pseudocubic groups of lines with as many as eight single 
lines in one group. In the present version of the pro- 
gram, the parameters of hexagonal or tetragonal pseudo- 
cubic lattices can be evaluated. 

The minimization of the sum of the squares of de- 
viations [relation (3)] is performed using a fitting, least- 
square program (Hnilicka & Karmazin, 1969). Ini- 
tially the estimated values of the parameters are inserted 
into the program which calculates the value of S, and 
by a trial iterative procedure changes the parameters to 
minimize the value of S. The program performs the 
minimization of S employing preliminary selected par- 
ameters while others are kept constant. This allows 
appreciable variations of the program with respect to 
the different relations between the characteristics of 
the lines, and permits the selection of the system of 
independent parameters from the input data. The ref- 
erence lines can be, but need not be, used for the eval- 
uation according to the conditions of experiment. 

IV. Measurement of lattice parameters 
of rhombohedral PbTiyZrl_yO3 

The foregoing procedure for determining lattice 
parameters from overlapped profiles was used for 
the diffractometric measurements of four samples of 
rhombohedral PbTiyZrl_yO3 with y=0.10,  0.20, 0.30 
and 0-38. The hexagonal indices 226 and 422, and two 
reference Co Ka doublets 331 and 420 of either silver 
or aluminum, were used for the evaluation. 

The single lines were approximated by symmetrical 
Cauchy curves [equation (1)]. For eight lines of four 
doublets, a total of 24 parameters had to be determined. 
To decrease the number of independent parameters, 
the relations (4a) and (4b) were used. In equation (4a) 
M was determined with/2(0) = 1. In equation (4b) both 
co(0) and W were set equal to unity. 

The positions of the lines were expressed by equation 
(6) where the angles ~0, were determined from equation 
(7) for PbTiyZrl_~O3. A similar relation 

[ 2,, + I,. + 1. ] (8) q~"= c°s-1 [2A 

was used for the reference lines, where h,,, k,z, l,, are the 
cubic indices and A is the lattice parameter of the ref- 
erence material. The determination of intensity profiles 
of the lines was performed on a goniometer where, in 
principle, the constants X and Y of equation (6) can be 
determined by independent measurements. However, 
the values of X and Y were determined on the basis of 
the known positions of the reference lines s~ as to avoid 
the independent alignment of the zero point of the 
goniometer. Moreover it was possible to eliminate the 
small, residual eccentricity of the sample mounting 
from a determination of Y. The evaluation in this 
respect was carried out as for photometric film meas- 
urements. 

By use of the foregoing procedure, the 24 parameters 
were reduced to 12 independent ones: two hexagonal 
lattice parameters, two heights, one common width of 
the doublets of PbTiyZrl_rO3, two heights and two 
widths of the reference doublets, one common ratio 
of the intensities of the cq and c~2 components of the 
doublets, and two parameters X and Y. 

The measurement of the experimental profiles was 
performed at 25°C on a G.E. XRD-5 diffractometer 
using Co Kc~ radiation. Sintered, solid samples of 
PbTiyZrl_~O3 were used, the surfaces of which were 
carefully polished. The reference material, silver or 
aluminum both of purity 99.999 %, in the form of heat- 
treated filings (particle size < 43/2m) was placed on the 
surface of the samples by means of a thin layer of 
vaseline. The lattice parameters of the reference material 
were determined using a Straumanis asymmetric cam- 
era. Results of 4.0862 ~ for silver and 4.0496 A for 
aluminum, bgth at 25°C, are in agreement with the 
reported values of Pearson (1967). 

V. Results and conclusions 

The experimental results of the profiles, after subtrac- 
tion of background, are shown dotted in Fig. 1. The 
solid lines drawn through the experimental points are 
the resulting superposed analytical curves as deter- 
mined by the computer technique. In Fig. 1A the re- 
sulting profiles of single lines are added for illustration. 

Table 1. Results o f  parameter measurements o f  
PbTiyZrx_yOa 

y Samples a (/~) c/a ar (/~) 90 °-~t (') w (o) 
0"10 I+Ag 5"8414 1"23344 4"1403 16"26 0"76 
0"20 I+Ag 5"8174 1"23385 4"1237 17"03 0"87 
0"30 I+Ag 5"7917 1"23463 4"1064 18"48 1"16 
0"30 I+A1 5"7918 1"23464 4"1065 18"49 1"13 
0"38 I + Al 5"7705 1"23537 4-0922 19"85 1"47 
0"38 II+A1 5"7706 1"23541 4"0923 19"93 1"73 
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The lattice parameters and widths of PbTi~Zrt_yO~ are 
given in Table 1 where a, and c~ denote the transformed 
rhombohedral lattice parameters. 

In addition to the basic series of samples, denoted as 
(I) (Table 1, Fig. 1), three more measurements were 
made for estimating the precision. Two are given in 
Table 1. For y=0.30 the same sample was used as in 
the basic series, but the reference material was silver 
rather than aluminum. For y=0.38 another sample 
of the same composition was used employing a different 
technique for polishing the sample surface. A third 
measurement was made to compare the reference ma- 
terials. Here silver was used as the reference material 
and the lattice parameter of aluminum was determined 
as for the pseudocubic samples. The measured value of 

aluminum was 4.04964 /~ at 25 °C in agreement with 
the reported value of 4.0496 A. 

On the basis of these results, it is concluded that the 
precision of the determination of the lattice parameters 
of PbTiyZrt_yO3 in this study is of the order of 0.005 %. 
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Electron microscopy and diffraction evidence is presented for the existence of four new molybdenum 
oxides MonO3n-2, n= 19, 20, 21, and 22. 

Introduction 

The structural chemistry of the higher molybdenum 
oxides MoO~, 2.00 < x < 3.00, was thoroughly studied 
by Magn61i and Kihlborg. They determined and/or 
refined the crystal structures of MOO2, MoaOlt(mono- 
clinic), Mo4Ou(orthorhombic), Mo17047, Mo5014, 
MosOz3, Mo9026 (monoclinic), Mo~sOsa(triclinic), and 
MoO3 (see review by Kihlborg, 1963a). Magn61i (1953) 
introduced the idea of homologous series to describe 
the structural relationship between Mo8023, MO9026 
and an hypothetical MoO3 with ReO3-type structure. 
He proposed a method for deducing the unit cell and 
atomic positions for unknown members of the series. 
Further members were then found in the mixed oxides 
(Mo, W),O3,_t with n=  10, 11, 12, and 14. There was 
almost complete agreement between the observed and 
predicted structures. 

It has remained puzzling that Magn61i phases with 
n > 10 did not appear in the pure molybdenum oxides. 
Instead Mo9026 and MoO 3 appeared to be the only 
stable phases between 750°C and the melting point 
790°C. A completely different structure, Mo~sOs2, 
coexisted with MoO3 at lower temperatures. Single- 
crystal studies showed it to be derived from MoO3 
rather than ReO3 (Kihlborg, 1963b). Kihlborg proposed 
that this was the first member of a new homologous 
series Mo,O3n-m+l(MoO3) with n=18, m=3,  a n d x =  

2.8889. His X-ray patterns suggested that at least four 
other phases existed but were rare, could not be pre- 
pared reproducibly, and were presumed metastable. 
Approximate unit-cell parameters were derived for two 
of these and a comparison with the ideal values sug- 
gested that they may be Mo13038(n=13, m=2,  x =  
2.9231) and Mo26075(n=26, m=4,  x=2.8864). 

Later X-ray studies have revealed a large number of 
ReO3 based homologous series (the block structures) 
in the niobium oxides and oxyfluorides MXx, 2.4< 
x < 2.7 (Wadsley & Andersson, 1970). The term crystal- 
lographic shear (CS) structures was introduced to 
describe the formal relation between the members of 
such series and the parent structures (Wadsley, 1955). 

Electron optical studies of TiOx (Bursill, Hyde, 
Terasaki & Watanabe, 1969; Bursill & Hyde, 1971) and 
of (Ti, Cr)O~ (Bursill, Hyde & Philp, 1971) in the 
composition range 1.89<x<1.98 have revealed nu- 
merous homologous series Ti,O2,_, (1 _< a <  30) derived 
from rutile by CS. The X-ray studies (Andersson & 
Jahnberg, 1963) suggested that the one known series 
4 <n < 9 merely extended to higher n values. On the 
contrary new structural principles emerged giving a 
continuous series of ordered phases reminiscent of the 
proliferation of phases around NbzOs. These new 
phases could not be detected by X-ray diffraction due 
to their special reciprocal lattice geometry. 

We therefore chose to study MoO~, 2.89_< x <  3.00, 


